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Abstract. Spectral-line fitting problems are extremely common in all remote-
sensing disciplines, solar physics included. Spectra in solar physics are frequently
parameterized using a model for the background and the emission lines, and various
computational techniques are used to find values to the parameters given the data.
However, the most commonly-used techniques, such as least-squares fitting, are
highly dependent on the initial parameter values used and are therefore biassed. In
addition, these routines occasionally fail due to ill-conditioning. Simulated annealing
and Bayesian posterior distribution analysis offer different approaches to finding
parameter values through a directed, but random, search of the parameter space.
The algorithms proposed here easily incorporate any other available information
about the emission spectrum, which is shown to improve the fit. Example algorithms
are given and their performance is compared to a least-squares algorithm for test
data — a single emission line, a blended line, and very low signal-to-noise ratio data.
It is found that the algorithms proposed here perform at least as well or better
than standard fitting practices, particularly in the case of very low signal-to-noise
ratio data. A hybrid simulated annealing and Bayesian posterior algorithm is used
to analyze a Mg X line contaminated by an O IV triplet, as observed by the Coronal
Diagnostic Spectrometer (CDS) onboard SOHO. The benefits of these algorithms
are also discussed.

Keywords: Methods

1. Introduction

Solar spectra, comprising continuum emission, line emission (or absorp-
tion) background emission and noise, can provide useful and detailed
information on the physical state (for example, plasma density, bulk
plasma flow, turbulent flow) of the emitting volume. To extract such
information, one typically assume a profile for each line thought to
be present and a varying background signal. This model spectrum is
then fitted to the data. However, the fitting procedure used can make a
difference to the information extracted. A study by Brynildsen (1994)
of the Gaussian fitting routines used in the support software to the CDS
and SUMER (Solar Ultraviolet Measurements of Emitted Radiation)
instruments onboard SOHO makes this amply clear. The report con-
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2 J. IRELAND

cludes that the fitting techniques used — all dependent on some form of
user-supplied initial guesses (whether automated or interactively set)
and deterministic algorithms — work well when there is one Gaussian
component present, but become dependent on the initial guess when
two or three components are present.

Unfortunately, there are many portions of the solar spectrum that
contain multiple and overlapping lines, and so generating reliable pa-
rameter values becomes much more problematic. For such spectra,
other approaches can be tried: for example, McIntosh et. al. (1998)
examined the applicability of genetic algorithms to spectral-line fitting
problems. It was found that the dependence on initial guess can be
largely eliminated, at the expense of much longer computation times.
A genetic algorithm is an example of a random, but directed, search
algorithm: this algorithm relies on an analogy with the process of evo-
lution, finding local minima in the search space, whilst also permitting
the possibility to jump to other smaller local minima (including the
global minimum).

Line-fitting algorithms find estimates to line model parameter values
by first calculating a function that describes the difference between the
data and the model, known as the cost function. The parameter values
are varied until a point in the parameter search space is found where the
cost function is minimized. The commonly used least-squares approach
uses a cost function based on the (weighted) sum of the square of
differences between the data and the model; new parameter values are
found by using the gradient of the cost function to move to parameter-
space areas that give lower values of the cost function.

Simulated annealing (SA) and Bayesian posterior distribution anal-
ysis via Markov chain Monte Carlo (MCMC) algorithms offer different
ways to traverse the parameter space to look for minima in the cost
function used to find a fit.

These algorithms bring two advantages to the analysis of spectra. As
will be shown in Section 5, routines such as IDLL. CURVEFIT (a least-
squares based algorithm) give final results which are highly sensitive
to the starting point chosen. Simulated annealing requires no special
starting point in order to seed the fitting process, and so the final answer
is independent of the user’s bias in initial choice. Bayesian posterior
distribution analysis allows the user to specify the statistics of the
observed data, and to include any prior information on the parameters
as part of the process in finding the best explanation of the data in
terms of the given spectral model. This frees the user from considering
only Gaussian statistics, implicit in IDL CURVEFIT and in most other
fitting routines. This is important in low count regimes where the
Gaussian approximation breaks down and Poisson statistics must be
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used. In addition, if the user has information about the observation,
for example, a minimal instrumental line width, or an expectation to
observe Doppler shifts, then this too can be included as part of the
process in finding the best parameter estimates.

This paper applies these two algorithms to test data in order to ex-
amine their utility in fitting model spectra to data. Section 2.1 describes
the development of a simulated-annealing algorithm for spectral-line
fitting, whilst Section 2.2 describes a Bayesian posterior distribution
analysis. Section 4 takes both algorithms and applies them to the anal-
ysis of a Mg X line observed by SOHO/CDS. Section 5 compares the
effect of using different assumptions of noise in the data for very low
signal-to-noise ratio spectra. Finally, Section 6 examines the case for
using these algorithms in routine data analysis.

2. Fitting Algorithms

2.1. SPECTRAL MODEL FITTING BY SIMULATED ANNEALING

Simulated annealing was introduced by Kirkpatrick et al (1983) as a
solution method to the travelling salesperson problem. It is a function
minimization strategy based on an analogy with the creation of crystals
from their melts. Since its introduction, it has been applied to many
more problems, including the minimization of multi-modal function
with continuous variables (Corana et al. 1987), and more recently, to
finding separatices in 3D magnetic fields (Beveridge 2006).

In annealing, materials are reheated and slowly cooled in order to
reduce the number of defects in the final crystal structure (defects
in the structure trap energy within the crystal). Simulated annealing
makes analogies between the energy contained in the structure (E, the
function to be minimized), the configurations (C') of the crystal struc-
ture (£ is a function of C') and temperature (7, an annealing schedule
controlling the convergence of the algorithm to a final configuration).
A generalised simulated annealing algorithm is presented in Figure
1. At large values of T, the algorithm behaves like a random search
since almost all Ce, have energies E,.,, that satisfy the Metropolis
criterion (Metropolis et al. 1953). As T is lowered (analogous to cool-
ing), more and more Cj,y become unacceptable, with only a few Cpe
satisfying the Metropolis criterion (highlighted by asterisks in Figure
1). At this stage the algorithm behaves like a localised search with
hill climbing to allow it to jump out of local minima. Finally, as T
becomes yet smaller, the chances of moving significantly away from the
current local minimum become very small, and the routine has, for
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Procedure Simulated Annealing
begin
generate initial configuration Ceyrrent
set initial temperature Ty
t=1
repeat
repeat
generate new configuration Cheyy from Cryrrent
evaluate Eyew, Eeurrent
*if (Enew < Ecurrent) then begin
* accept Chew: becomes Cleyrrent for next iteration
* endif else begin

*  pick a number p chosen uniformly randomly in the range [0, 1)
*oif (exp {— [7Enew}€‘3“‘rr‘5"t” > p) then begin
accept Chew: becomes Ciyprent for next iteration
*  endif
* endelse
until (equilibrium condition reached)
Tiv1 = m{T}}
t=t+1

until (procedure termination condition satisfied)
final configuration C'ipal
end

Figure 1. Scheme for general simulated annealing algorithm (pseudo-code adapted
from de Vicente et al., 2003).

most practical purposes, converged to an optimal solution. The general
algorithm above conceals a number of choices that are left to the user.
The algorithm says nothing on how a new configuration is generated
from a previous one, how a configuration is to be represented, a suitable
choice of energy function to minimize, or how the temperature should
be changed.

Spectra of the form

o (i — ¢;)?
F; =M+ZAJ' exp lw] (1)
j=1 J
are considered, where there are Ny data values D = {Dy, D», ..., Dn,}
observed at x = {x1,292,...,2n,}. A configuration C is formed from

p, A1, c1,01, -, AN,y €Ny ON, (143N, variables), where Ny is the num-
ber of Gaussians used to fit the data. The energy function is chosen to
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permit easy comparison with least-squares fitting algorithms; therefore,

i (Fy — D)
E=3 oo 2)
=1 ?

for some set of weights (W;). A new variable vpe, is calculated from
the old v,;q through
Unew = Vold + ov (3)

where dv = /Y (v)N(0,1) is recalculated until vyin < Vnew < Vmagz
for upper and lower limits v;,q; and vy, respectively. The step size
(6v) is calculated from the square root of the Cramer-Rao lower bound
Y (v) (Ireland, 2005) for each variable. For each variable v, T(v) is a
lower limit to the variance for a measurement of the variable, and so
its square root generates a natural scale size of the search space around
the estimated value. It is expected (since the search space is relatively
smooth) that better solutions lie close to solutions that are already
good and so normally distributed step sizes are used.

The temperature at time ¢ (the annealing schedule) is given by
Ty = Tpdt for some 0 < § < 1 and initial temperature Ty (Corana
et al. 1987 also use this form of temperature dependence in their study
of minimizing multimodal functions of continuous variables). Further
details of the algorithm initialization are problem-dependent and are
given in Section 3.

2.2. BAYESIAN POSTERIOR DISTRIBUTION ANALYSIS

Recent developments in spectroscopic analysis have used techniques
borrowed from Bayesian statistics and Markov chain Monte Carlo meth-
ods. van Dyk et al., (2001) implement ideas from these areas to analyze
low-count spectroscopic stellar data. (Kashyap and Drake, 1998) use a
Markov chain Monte Carlo based code to reconstruct differential emis-
sion distributions from data observed by the Solar Extreme Ultraviolet
Rocket Telescope and Spectrograph (Brosius et al. 1996). Both these
papers take advantage prior information (in the form of probability
distributions) into the determination of the parameter values. This
results in a posterior distribution encapsulating our knowledge of the
model — sampling from this distribution is achieved using a Markov
chain Monte Carlo technique.

Let C be the set of parameters of interest. Then the probability
distribution of the parameters given the observed data D

p(DIC. Dp(C]1)
P(DID) @)

p(C|D, 1) =
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6 J. IRELAND

where I represents any initial information known before D is observed.
The quantity p(C|I) is called the prior distribution; it represents prior
knowledge of the parameters C' given the information I. The sampling
distribution or likelihood p(D|C, I) is the likelihood of the data D given
the model parameters. The left-hand side of Equation (4) is called the
posterior distribution.

2.2.1. Bayesian Posterior Distribution Analysis Via Markov Chain
Monte Carlo Methods: The Metropolis-Hastings Algorithm

Having written down the posterior distribution, it remains to draw
samples from this probability distribution. Samples can be generated
by any process that draws from the target distribution p(D|C,I) in
the correct proportions. Markov chain Monte Carlo methods (MCMC)
algorithms generate the samples by constructing a weighted random
walk through the parameter space such that the probability of being
in a region of the space is proportional to the posterior distribution
density for that region. Hence the proportional samples of the posterior
distribution are recreated.

The random walk is implemented using a Markov Chain; a sample
Ci41 depends on the previous sample Cy via the transition probability
p(Ct+1|Ct). The transition probability is also assumed to be time in-
dependent. After an initial “burn-in” period, the transition probability
p(Ct+1|Ct) generates samples X with the same probability density as
the posterior distribution p(C|D, I).

Figure 2 is a pseudo-code version of a Metropolis-Hastings Markov
chain Monte Carlo algorithm. There are two steps in implementing
this. The first step involves picking a proposed value - (V) - that may
be accepted as the next value C;. The value of (Y) is chosen from a
proposal distribution ¢(Y'|C;) which is easy to calculate. The second
step to decide whether the candidate Y is to be accepted as the value
of Cy41. This is done by calculating

. PYID, Dg(Gr|Y)
p(Ce|D, I)q(Y'|Cy)

which is known as the Metropolis ratio. If » > 1, then Y is accepted as
the value of Cyyq. If r < 1, then a random number U is drawn from the
uniform distribution between 0 and 1. If U < r then Y is accepted as the
value to Cyq1. If not, Cyy1 = C;. The Metropolis-Hastings algorithm
generates samples (X ) which converge on the target posterior distribu-
tion p(D|X,I) for a wide range of proposal distributions ¢(Y|X) (for
more details on a proof of convergence see Gregory, 2005).
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Procedure Metropolis-Hastings
begin
initialize Cj
set t =0
repeat
obtain a new sample Y from ¢(Y|C})
calculate acceptance probability r = %
if » > 1 then begin
Cip1 =Y
endif else begin
pick a number U chosen uniformly randomly in the range [0, 1)
if U < r then begin

Cit1=Y
endif else begin
Ciy1=Cy
endelse
endelse

increment ¢

until (procedure termination condition satisfied)

Distribution samples are C' from ty,,,,.11.in t0 tend-
end

Figure 2. Metropolis-Hastings Markov chain Monte Carlo method pseudo-code
(adapted from Gregory, 2005).

2.2.2. Algorithm Details
The posterior distribution defined in Equation (4) is proportional to

the likelihood and the priors. The likelihood for spectral data is given
by

Nd FDZ "
p(DIX, 1) = [[ F7e ™ (5)
=1 v

where F; depends on the model variables C. Priors for the emission
variables depend on the variable type. Both Gaussian amplitude and
background (Gregory, 2005) are given Jeffrey’s priors (for example,
p(A) = 1/[Aln(max(A)/ min(A))]), whilst line position and width are
given non-informative priors (for example p(c) = 1/[max(c)—min(o)]).
The maximum and minimum values are simulation dependent and are
given below. The proposal distribution from which a new sample Y is
drawn is a normal distribution, that is Y ~ N(Cy,0p), where N is a
normal distribution of mean C; and width o,,.
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Table I. Comparison of the performance of the IDL routine
CURVEFIT against the simulated annealing routine. The true
parameter values are listed in Section 3.1. Both SA and MCMC
are limited to considering the range of values 0.1 < A; < 2000,
—5.0<¢1 £5.0,0.1 <01 £4.0and 0.1 < p < 2000. Variables are
quoted as mean|o, o2 (v)/Y (v)] where o is the standard deviation
of the distribution of results found.

variable CURVEFIT SA MCMC
A 1434[25.4,1.50] 1434[26.6,1.51] 1436[30.2,1.43]
o 0.00[0.02,1.16]  0.00[0.01,1.17]  0.00[0.02,1.32]
o1 1.00[0.02,1.50]  1.00[0.02,1.52]  1.00[0.02,1.41]

111 114.0[4.04,1.19]  114.0[4.14,1.25]  114.0[4.3,1.28]

3. Results

3.1. SINGLE EMISSION LINE

The first spectrum is based on the Fe XVI 360.76A emission observed
by SOHO-CDS in the execution of the SYNOP /v1 study. In this study,
a window of emission from 360.123A —361.386A is observed using 18
pixels. The simulated line is centred in a window of 18 pixels, which has
a constant background emission (x4 = 114 photons/px), and A; = 1434
photons/px, ¢; = 0.0, o7 = 1.0. Simulated data D; at pixel z; is
drawn from a Poisson distribution with mean F;.Results from SA and
MCMC are compared to those from the IDL program CURVEFIT;
all three algorithms are seeded with the same initial estimate; u =
min(D), A = max(D)—min(D),c = ZZN:dl x(Di—p)/ ZZN:dl(Di—u), o? =
Zf\fl (D; — p)(x — ¢)?/ vazdl(Di — ). Note that seeding with special
values is not required for simulated annealing, as the routine moves
randomly through the search space at large values of annealing tem-
perature T, essentially rendering all starting points equivalent. The
estimated values are however, crucial to the effective operation of the
deterministic CURVEFIT routine that is used for comparison. Variable
values in SA and MCMC as well as CURVEFIT are unconstrained.

Consider first the results of the analysis of a single line using SA
compared to the IDL routine CURVEFIT. Table I shows that the
answers found by SA are almost identical to those of CURVEFIT
(the SA schedule is run with 6 = 0.91 for 150 iterations and 100 trial
configurations tried at each timestep; the weights W; = 1,Vi).

Figure 3 shows performance diagnostics of the simulated annealing
algorithm for the simulation. For the simulation (Figure 3(a)), the
acceptance ratio begins high, indicating that the routine is performing
like a random search through the entire search space. As the temper-
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Figure 3. Average acceptance ratio (a) and average energy (E) (b) over 1000 fits of
the single Gaussian simulated data. The acceptance ratio is defined as the ratio of
the accepted number of moves to a higher energy divided by the attempted number
of moves to a higher energy.

ature cools, the routine moves more towards a more localized search,
exploring only smaller increases in energy. Finally, the routine becomes
a downhill search with effectively zero probability of an uphill move
being acceptable. Figure 3(b) shows the energy behaviour. Note that
the energy increases initially, indicating that the initial guess is not
the worst possible one, and that the routine is acting like a random
search, since it almost immediately jumps to a location in the search
space which has a much higher energy. Despite this, SA still finds
values equivalent to those found by CURVEFIT. The energy measure
is reduced by a factor of at least ten from its maximum value (and
less than the initial value), indicating that minimization of the energy
function has occured. MCMC has a comparable fitting performance
to SA (the final 1000 draws of a total of 10000 draws are used to
calculate the values in Table I). Both MCMC and SA are performing at
least as well as CURVEFIT in this simple situation. Note that MCMC
errors correctly take into account the Poisson nature of the source data,
whereas SA and CURVEFIT do not.

Both SA and MCMC are considerably slower than CURVEFIT,
although in general the time penalty will vary depending on the prob-
lem being solved and the configuration of the algorithm (for example,
number of cooling steps in SA or number of draws from the posterior
distribution in MCMC). It is important to note, however, that the in-
creased amount of time these algorithms take over CURVEFIT do bring
two important features to line-fitting. Firstly, SA does away with the
need to seed the fitting algorithm with a special initial value, eliminat-
ing user bias. Secondly, the results of the MCMC simulation properly
take into account the full state of knowledge of the problem, including
likely parameter values and the noise properties of the observation.
This is especially important in low signal-to-noise ratio observations,
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10 J. IRELAND

where the common assumption of Gaussian-distributed noise may not
be applicable and other noise distributions, such as Poisson, have to
be used. Example analyses are given below in Section 5 demonstrating
the difference that inclusion of the proper noise distribution makes to
the behavior of the fit in low-signal to noise regimes. In addition, the
noise distribution in MCMC is not necessarily limited to Poisson or
Gaussian distributions, and so MCMC can be used to fit lines where
the noise is arbitrarily parameterized.

Finally, the summary statistics, such as error bars on the average
values to the line parameters, properly reflect the complete knowledge
of the model and the data, rather than the much more general, and
less specific, knowledge implicit in algorithms such as CURVEFIT. For
example, if the user has very good knowledge of the line width, this
can be incorporated with an appropriate prior, and the resulting final
answer for the line width will be more accurate, and more precisely
determined. Further, all other parameters in the line fit will also be
affected by this information, leading to a more correct determination
of the line profile given the very good knowledge of the line width.

3.2. TwO EMISSION LINES

The second spectrum is based on the first with the inclusion of a second,
smaller line, contaminating the larger line, which we will assume is the
one we are interested in measuring. This spectrum can be used to judge
the efficacy of these routines in correctly separating the two lines. The
second line has amplitude Ay = A;/3, width oy = 01/2 and moves
across the spectrum with a center co, 0 < ¢3 < 5. Both SA and MCMC
limit variable values to 0.1 < Ay, Ay < 2000, —5.0 < ¢1,¢9 < 5.0,
0.01 < 01,02 < 5.0 and 0.1 < p < 2000.

Figures 4, 5, and 6 show that the inclusion of a second contaminating
line is a serious problem for CURVEFIT, SA, and MCMC. All routines
find that the true amplitude value is particularly difficult to find when
0 < ¢ < 2. For Figure 5, variable values outside the y-axis range in the
above plots are considered not acceptable and are therefore discarded.

All routines exhibit broadly similar behaviors for different positions
¢, but with some significant variation. CURVEFIT often does not find
values within the acceptable range at all, indicating a significant break-
down of fitting in a large number of cases. The routine becomes trapped
in regions of the search space distant from the location of the true mini-
mum and cannot move from these local minima given the deterministic
nature of the routine. Another significant problem, particularly for SA
and CURVEFIT can be seen in the frequent occurence of fits inside the
permitted range, but well away from the true values. For 2 < ¢o < 4, SA
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zontal solid lines denote the true values of the emission spectrum parameters. The
dashed line (with reference to the right hand axis values) indicates the number of
valid values at every position of the second emission line.
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and CURVEFIT fit the overall shape by minimizing F but do poorly at
deriving the proper variable values, even though they find local minima
— the information (contained in the true variable values) is smudged out
by the noise. MCMC does considerably better in this range — it is not
minimizing F, but rather finding those variable values that are most
likely to give rise to the observed data given the spectral model. Hence
the difference between SA and CURVEFIT and MCMC is largely due
to the different approach to finding variable values.

The reduced x? (Figure 8) values show that the routines are finding
good fits to the data on average, in the sense that the sum of the
squares of the differences between the data and model fit, weighted by
the data values, are close to or below one. Again, MCMC out performs
the other two methods by this measure also. Figure 9 shows that the
average values found for the main Gaussian are closer to the true values
over more of the range of second Gaussian positions.

4. Application to Mg X / O IV spectrum in SOHO/CDS
The Mg X (625A) line as observed in CDS can be contaminated by
an overlapping O IV triplet (624.62A, 625.13A, 625.85A), as well as

background emission. However, as a consequence of their formation
mechanism, the lines in the triplet are not independent and appear at
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Figure 9. Comparison of the main Gaussian parameter values and background as
found by SA (green, dashed line) MCMC (black, solid line) and CURVEFIT (red,
dotted line), as a function of the second Gaussian position, with an error bar of
plus/minus one standard deviation. True values are indicated by the dashed lines.

fixed offsets relative to each other, and have fixed relative amplitudes.
Hence the entire spectrum can be represented by three variables for the
Mg X line, a constant background value, and three variables represent-
ing any one of the O IV triplet. O IV 625.85A is chosen as it has the
largest amplitude and is most distant from the Mg X line; this makes
this line the easiest to consider fitting out of the triplet. The model is

Fi=u+ A1G (Cl, 0'1) + AsG (CQ, 0'2) + 0.67045,G (CQ —0.723, 0'2) +
0.336 4G (ca — 1.231, 09) (6)

where G(c,0) = exp[0.5((z; — ¢)/o)?]. A hybrid algorithm is used to
determine values of the seven variables required. The hybrid algorithm
is seeded with a fixed estimate which is passed to a SA algorithm (as was
pointed out above, the initial seed matters little in this SA implemen-
taion). The best answer found after SA then seeds a MCMC algorithm.
The post burn-in sample distribution is then used to calculate mean
values and other parameters summarizing the distribution. A typical set
of post burn-in distributions are shown in Figure 10; a set of summary
measures of these distributions are shown in Table 4.

The advantage of this hybrid algorithm is that it permits a thorough
and unbiased examination of the search space, and is guaranteed to find
local minima without any user intervention. The errors associated with
each value also correctly take into account the Poisson nature of the
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Figure 10. Distributions of values found after burn-in. Indicated on each distribution
are mean values (thick solid) plus/minus the standard deviation (thin solid), mode
(dotted), median (dashed), the 95% credible interval (dot-dashed lines), and values
found interactively using MPCURVEFIT (dot-dot-dot-dashed).
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Figure 11. Original CDS data (solid line, histogram) overplotted with average fit
(solid line, taken from mean values in Table 4). Also plotted is the Mg X line (short
dashed line), the O IV triplet (dotted lines) and the background (long dashed line).
The reduced 2 value of the MCMC fit is approximately 0.317; using the variable
values found through MPCURVEFIT is approximately 0.381.
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Table II. Results of fitting Equation (6) to data by the hybrid algorithm
described in Section 4. Mean, standard deviation (s.d.), mode, median and
credible interval values are calculated on the post burn-in distributions
shown in Figure 10. The credible interval is measured by starting at the
tails of the distribution and moving in until the percentage of values lying
outside the limit is 2.5% .

variable mean|s.d.] mode median  95% credible interval

Mg X A1 1258.47[8.62] 1253.77  1255.10  1244.06, 1273.49

Mg X ¢1  624.965[0.004] 624.965 624.965 624.957, 624.972

Mg X o1 0.229[0.004] 0.229 0.229 0.221, 0.235

OIV A, 176.02[3.48] 171.22 170.090 170.10, 182.93

O IV ¢ 625.85[0.023] 625.85 625.85 625.81, 625.89

O 1V o2 0.284[0.015] 0.280 0.282 0.256, 0.314

I 55.59[1.83] 57.04 55.75 51.87, 58.49

noise. A CURVEFIT-based fit relies on multiple and inevitably biased
initial choices, and possible user intervention should the routine crash.
In addition, the errors are assumed to be normally distributed, which is
a valid approximation only in the large-count limit. The hybrid routine
inherently assumes Poisson statistics. Finally, it should be noted that
the hybrid algorithm arrived at a good fit without any user intervention
during the run, or any particular seed value to start the algorithm.

5. Application to Poor Signal-to-noise Ratio Data

For photon counting spectrometers, the assumption of Gaussian- dis-
tributed data is not valid when the number of counts is very low.
Hence the assumptions implicit in least-squares algorithms such as
CURVEFIT break down, leading to incorrect fits.

Table III compares the results of applying the hybrid algorithm to
two simulated spectra with very low counts (with slightly varying prior
knowledge) to results arising from applying CURVEFIT to the same
data. Two simulated spectra are considered. The first has A1 = 2,
c1 = 0, and o1 = 1. The second spectrum has the same emission line,
this time on a background of p; = 5. The signal to noise ratio of
this second spectrum is less than one. Further, two different sets of
prior information are used, labeled (a) and (b); variables are restricted
to 0 < Ajp,p1 < 10 (Jeffrey’s prior), =5 < ¢; < 5 (uniform prior),
0.1 < 01 <4 (Jeffrey’s prior), as applicable, for prior set (a). Prior set
(b) changes the range on the line width to 0.8 < o1 < 1.2; all other
priors remain unchanged, and so changes in average parameter values
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and errors are solely due to the effect of improving the information
on the line width. The SA algorithm looks for minima with parameter
values within the limits described above.

Simulated spectra are created by drawing from a joint Poisson distri-
bution with mean equal to the true value of the spectrum. The hybrid
algorithm is started with a uniform-random chosen initial value and
seeds an SA algorithm. The best result found is then used to seed
a MCMC algorithm and CURVEFIT. This process is repeated 1000
times, and the mean values and one standard deviation errors for each
of the parameters are given in Table III.

As can be seen, the MCMC algorithm gives answers which are on
average more accurate and more precise than either CURVEFIT or
SA. This is a reflection of the fact that we have properly accounted for
the noise in the system. The assumption of Gaussian-distributed errors
leads to less accurate and less precise values in the case of a low signal.

Further, the use of better information (comparing results labeled (a)
and results labeled (b)) in the form of different priors also improves the
mean value and the error. This demonstrates that when fitting lines,
the hybrid algorithm takes advantage of all the information available to
the user in order to get the best possible estimates of the line parameter
values and errors.

This strongly suggests that in low signal-to-noise ratio data, a full
understanding of the noise properties of the data, and the inclusion of
any other relevant information, is essential in understanding the emis-
sion spectrum and in obtaining the best possible estimates of parameter
values and errors.

In higher signal-to-noise ratio spectra, Poisson-distributed noise can
be approximated by Gaussian distributed noise with width equal to
the square root of the number of counts observed, or, equivalently,
by assuming a “Poisson weighting” in CURVEFIT. However, in such
routines it is difficult to also include the effects of any extra knowledge,
such as improved knowledge of the line width, or limits on amplitudes
(see Figure 7).

6. Conclusions

Simulated annealing algorithms and Bayesian posterior distribution
analysis have been successfully applied to the determination of spectral
model parameter values' It is clear that disentangling two overlapping
lines in the presence of noise is a difficult problem. The search space

L Software and examples are available for download URL
http://umbra.nascom.nasa.gov/people/ireland /linefit.html.
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18 J. IRELAND

Table III. Comparison of the performance of the IDL routine CURVEFIT
against SA, and MCMC seeded with the best result from SA (the hybrid rou-
tine). Parameter values are quoted as (value)+(standard deviation). The true
parameter values are Ay = 2, ¢; = 0, 01 = 1, and p1 = 5. Simulation (1)
refers to an emission line with no background; simulation (2) has a background.
Labels (a) and (b) refer to different priors used. CURVEFIT parameters given
in italics refer to average values and their concomitant one-standard-deviation
errors when the answered returned by CURVEFIT lie within the range of values
given by the priors. The number of parameter sets lying within these ranges are
(1a) 977/1000, (1b) 273/1000 (2a) 842/1000 and (2b) 131/1000.

simulation parameter curvefit SA MCMC
(1a) Aq 3.63+2.39, 3.44+1.76 3.23+1.62  2.2241.00
c1 -0.024+0.52, -0.01+0.50 -0.02+0.52 0.00%0.39
o1 0.66+0.40, 0.67£0.39 0.69+0.40 1.09+0.36
(1b) Ay 3.6043.48, 2.25+0.79 2.2840.87  2.02+0.72
c1 0.01+0.50, 0.02+0.43 0.01+£0.49  0.00+0.39
o1 0.7240.41, 0.98+0.11 0.91+0.16  1.00£0.06
(2a) Aq 6.90+4.99, 5.92+2.75 5.47+£2.65  2.04%1.45
c1 0.1444.76, 0.09t1.87 0.104+2.05  0.0541.07
o1 1.80+7.79, 0.77+0.78 1.07£1.19  1.2740.53
“1 3.56+4.60, 4.68+0.8/ 4.50+1.12 4.9540.80
(2b) A 9.43498.3, 3.51+£1.43 3.34+1.48 1.48+1.13
c1 0.03+2.68, 0.10+1.34 0.0942.08  0.02%1.05
o1 0.904+1.73, 0.99+0.11 0.9240.16  0.9940.04
I 4.4242.71, 4.74£0.59 4.77+£0.59  5.14+0.58

becomes filled with minima that are often distant from the location of
the true values. Different search strategies locate different minima and
so map out the search space.

One advantage these algorithms have over CURVEFIT and other
deterministic routines is their stability when faced with noisy data — no
matrices are inverted and so problems associated with ill-conditioned or
singular matrices do not occur. Hence, these algorithms are guaranteed
to find minima in all cases. Also, these algorithms can be easily forced
to consider only reasonable areas in the search space.

MCMC presents the distinct advantage of both encoding the Poisson
nature of the counting statistics (or any other kind of statistics, if the
count distribution statistics are known) and allowing the generation of
uncertainty measures (for example, standard deviations) from the post
burn-in distribution of samples. This is a very powerful advantage, as it
permits the analysis of very low emission count data (on either high or
low backgrounds), taking complete account of the count statistics and
the model, and leading to better parameter estimates than traditional
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fitting routines. Summaries of uncertainty (such as standard devia-
tions and 95% credible intervals) in the average values also properly
incorporate the count statistics, and all available knowledge of the line.

It is envisaged that these techniques and related search algorithms
(for example, genetic algorithms, McIntosh et. al. 1998) could be used
to provide an initial input for more traditional routines, on both the
number of emission features present and their characteristics. In par-
ticular, such analysis methods will be useful in the analysis of noisy,
low-signal-to-noise line emission data from instruments on board the
SOHO spacecraft, such as CDS and SUMER, and from EIS onboard
Hinode.
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